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PURPOSE. To develop an automated method of localizing and discerning multiple types of
findings in retinal images using a limited set of training data without hard-coded feature
extraction as a step toward generalizing these methods to rare disease detection in which a
limited number of training data are available.

METHODS. Two ophthalmologists verified 243 retinal images, labeling important subsections of
the image to generate 1324 image patches containing either hemorrhages, microaneurysms,
exudates, retinal neovascularization, or normal-appearing structures from the Kaggle dataset.
These image patches were used to train one standard convolutional neural network to predict
the presence of these five classes. A sliding window method was used to generate probability
maps across the entire image.

RESULTS. The method was validated on the eOphta dataset of 148 whole retinal images for
microaneurysms and 47 for exudates. A pixel-wise classification of the area under the curve of
the receiver operating characteristic of 0.94 and 0.95, as well as a lesion-wise area under the
precision recall curve of 0.86 and 0.64, was achieved for microaneurysms and exudates,
respectively.

CONCLUSIONS. Regionally trained convolutional neural networks can generate lesion-specific
probability maps able to detect and distinguish between subtle pathologic lesions with only a
few hundred training examples per lesion.
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Many diseases manifest in the retina that affect a large
proportion of the population1,2 and can lead to poor

patient outcomes such as permanent vision loss if left
untreated. The cost-effectiveness of regular retinal screenings
has been well established,3 but one of the major barriers to
implementing more widespread screenings is the limited
number of eye care practitioners who are trained in interpret-
ing retinal images. Thus, there has been an active effort to
create methods to automate screening of retinal images.

One approach to automating retinal screenings is deep
convolutional neural networks (CNNs), which have become
popular because of their ability to classify images with high
sensitivity and specificity.4–7 CNNs are a new but rapidly
expanding machine-learning model used for object recogni-
tion in computer vision. The lure comes from the ability to
learn from examples, or training datasets, rather than hard-
coded rules. However, this strategy has several major
limitations that affect its utility. First, CNNs often struggle
in detecting the subtle pathologic lesions characteristic of
early-stage disease as these pathologies that distinguish mild
versus normal disease often reside in less than 1% of the
total pixel volume.8,9 Another limitation of deep learning is
that it requires large training datasets, usually larger than
tens of thousands of images. Especially for rare diseases,
compiling such a database can be an arduous, if not

impossible, task. Thus, while CNNs represent a promising
tool to assist in the screening and diagnosis of a number of
diseases, there are still significant limitations that must be
overcome.

One strategy that has been employed to address these
limitations is the use of sliding windows (Fig. 1a). This
refers to analyzing an image through a series of overlapping
windows that are each focused on a zoomed-in subsection
of the image, allowing for detection or segmentation of
lesions that otherwise would not reliably be detected.
Previous studies have successfully employed this strategy in
analyzing medical and ophthalmologic images in various
domains.10–13

This paper presents an optimized method for detecting the
subtle retinal lesions of microaneurysms and exudates using a
relatively small training set of only a few hundred images by
using a combination of manually cropped image patches that
comprise lesions and sliding windows. The purpose of this
study is to demonstrate that with very few training examples,
compared to what is currently cited in the deep learning
literature, a researcher can flexibly train a CNN to recognize
any number of findings, even rare findings, while overcoming
the resolution problem of CNNs unable to learn microscopic
findings by training on a more appropriate scale or feature size
to image size ratio.
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METHODS

Datasets

Two datasets were used in this project: the Kaggle retinopathy
dataset14 for training and validation and the eOphta dataset
(TeleOphta)15 for testing. Datasets consisted of color retinal
images that varied in height and width between the low
hundreds to low thousands of pixels. The Kaggle dataset
(EyePacs LLC, San Jose, CA, USA) is a collection of 35,126
images of diabetic retinopathy (DR) with five class labels
(normal, mild, moderate, severe, and proliferative) (Fig. 1b).
These images vary significantly both in image quality and
patient demographics and are sometimes mislabeled. There-
fore, two ophthalmologists screened a subset of these images
for both correct labeling and image quality. Images with
disagreement were excluded. The eOphta dataset contains
retinal fundus images derived from a consortium of French
hospitals and consists of 47 images with exudates, 35 exudate-
free images, 148 images with microaneurysms or other small
red lesions, and 233 microaneurysm-free images (Fig. 1c). For
the eOphta images, two ophthalmologists have labeled every
pixel in the image as either belonging to exudate, microaneu-
rysms, or neither (Fig. 1d). The pixel-level classifications are
provided as binary masks that are the same dimensions as the
original image.

Extraction of Image Patches Comprising Lesions

A small subset of Kaggle images (243) that were correctly
labeled and of sufficient quality were annotated independently
by two ophthalmologists to isolate subsections of the image
containing important clinical findings such as microaneurysms,
exudates, camera artifacts, neovascularization, and so forth.

These subsections were made into image patches centered on
the finding of interest; 1324 image patches mutually agreed
upon for the accuracy of their clinical label were used. Of
these, 1050 were included in the training set and 274 in the
testing set. Image patches were extracted such that they were
centered on the lesion of interest without constraints on patch
size. Patches were extracted at whichever size and shape was
appropriate to the lesion shape and scale. Normal patches
were taken from the same image as the abnormal patches in
regions that were free of abnormal lesions. Images varied
significantly in size and shape, ranging from 25 to 1050 pixels
in height and width. Overall, 609 images containing abnormal
lesions and 576 images without abnormal lesions were taken
from 243 whole images, and an additional 139 normal patches
were randomly cropped from normal retinal images for a total
of 1324 images. The dataset contained 260 images of
microaneurysms, 128 images of dot-blot hemorrhages, 73
images of exudates, 33 images of cotton wool spots, and 31
images of retinal neovascularization. The other 84 abnormal
images were distributed among various other abnormal lesions
such as laser scars and sclerotic vessels (Fig. 2).

Classification of Patches via CNN

The object of interest in these images occupied a proportion of
the total image that mimics that of the ImageNet dataset.
Typically, between 5% and 50% of pixels belonged to the object
of interest. A single CNN using the GoogLeNet architecture
with a 128 3 128 3 3 input with a five-class output was
constructed: (1) normal, (2) microaneurysms, (3) dot-blot
hemorrhages, (4) exudates or cotton wool spots, and (5) high-
risk lesions such as neovascularization, venous beading,
scarring, and so forth. A sample size of 33 was not enough
to train a reliable classifier for cotton wool spots specifically.
Due to the very small sample of cotton wool spots in our
training set, cotton wool spots and exudates were combined
into one class. This seemed more appropriate than placing the
cotton wool spots in a separate class of its own or placing them
in class 5 with the high-risk lesions. The CNN was trained on
1050 images and tested on 274 randomly selected images.10

Training and inference were performed using the FirstAid Deep
Learning repository16 implemented in Tensorflow and two
graphical processing units (Nvidia GeForce GTX 1080 ti; Nvidia
Corp., Beaverton, OR, USA). Training data were augmented
continuously during training by random zoom-in and zoom-out,
from 50% to 200% of image size, with zero padding in cases of
zoom-out. Random translation and rolling of the image were
performed up to half the height and width of the image.
Brightness and contrast were randomly adjusted by a factor of
0.5 each. Training was continued for 600 epochs, saving the
model parameter state with lowest validation loss, learning rate
of 0.001 and decay of 0.99, and 0.5 dropout rate implemented
in the last fully connected or dense layer.

Sliding Window Patch-Based Classification

The original retinal images were cropped to remove the black
pixels at the image margins. The remaining image was up-
sampled to 2048 3 2048 3 3 pixels in size. Pixels were
normalized by subtracting the minimum pixel value and
dividing by the maximum pixel value. Using a sliding window,
the trained CNN was passed over the full scan to give a
multiclass probability distribution across the image of the
aforementioned pathologies. A 128 3 128 3 3 window was
moved across full images with a slide of 32 pixels such that
windows overlapped. Each window was the input for a
forward pass through our trained CNN, producing a probability
score within that patch of the image for each of the five classes

FIGURE 1. Schematic of sliding window method and an example of
whole retinal fundus images. (A) Schematic of sliding window method,
demonstrating how the algorithm scans across subsections of the
whole image by moving in incremental steps. (B) Example image from
the Kaggle dataset. (C) Example image from the eOphta dataset. (D)
Binary mask from the eOphta image displayed in C. Black pixels in the
binary mask correspond to negative pixels in the original, and white
pixels in the binary mask correspond to positive pixels in the original
such that when the mask is overlaid onto the original, the white pixels
cover the microaneurysms or exudates almost exactly.
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of normal and pathologic lesions. The result of this sliding
window was a blanket of probability values over the entire
image for each of the five classes, mostly flat but with smooth
hills and valleys where the peaks correspond to high-
probability pixels and warm colors in a heat map for the class
of interest. These probability scores at each position in the
image were used to construct heat maps representing the
probability of pathology in local regions across the whole
image, as depicted in Figures 3 and 4. End to end, this process
took 1.1 minutes using a laptop with an Intel i7-6700HQ
Processor.

Statistical Analysis

To evaluate the efficacy of the patch-trained CNN used as a
sliding window across whole images, the eOphta dataset of
images was selected because it contained a large collection of
publicly annotated retinal images and pixel-level information in
the form of binary masks for microaneurysms and exudates,
but not for any other lesion types. As a measure of saliency, or
the ability to highlight important regions, pixel-level sensitivity
and specificity across varying thresholds were calculated as
one measure of performance. This is the same metric used in
binary classification tasks, only performed at the pixel level.
Pixels belonging to microaneurysms or exudates according to
the ground truth mask, which were predicted by the model to

have a probability score above threshold or below threshold,
were counted as true positive or false negative, respectively.
Pixels not belonging to microaneurysms or exudates according
to the ground truth mask, which were predicted by the model
to have a probability score above threshold or below threshold,
were counted as false positive or true negative, respectively.
The threshold refers to the probability threshold at which a
pixel was classified as positive for the lesion of interest. Various
thresholds were used between 0.0 and 1.0 to generate an area
under the curve of the receiver operating characteristic (AUC-
ROC) for every image in the eOphta test set with respect to
microaneurysms and exudates; the two lesions are presented
separately.

Another metric calculated was precision and recall, as
defined by positive predictive value compared to sensitivity in
a detection task. Although not explicitly trained to serve as
detection algorithm, the multiclass probability map was
adapted into a detection map by thresholding the probability
values and turning the probability map into a binary mask,
then considering each connected component as a declaration
that a lesion lies in this region. Connected components are
groups of positive pixels touching each other either by being
adjacent or through unbroken chains of other adjacent
positive pixels. Detection is typically measured by bounding
box overlap.17 The eOphta dataset does not come with
ground truth bounding boxes such as in traditional detection

FIGURE 2. Examples of manually cropped image patches containing lesions of interest. (A) Cotton wool spot, (B) laser scars and exudate, (C)
circinate ring, (D) venous beading and intraretinal vascular abnormality, (E) intraretinal hemorrhage, (F) intraretinal hemorrhage, (G)
neovascularization of the disc, (H) fibrotic band, (I) venous beading, (J) sclerotic ghost vessel, (K) microaneurysm, and (L) laser scar.
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datasets, but each connected component can be considered
to be one instance of a microaneurysm or exudate. Images
typically contain several instances of each lesion per image.
Centroids were defined as the center of mass of these
connected components. Using a threshold distance of one-
tenth of the dimensions of the image, true positives were
defined as ground truth centroids falling within a threshold
distance of a pixel predicted to be positive or the predicted
centroid falling within the threshold distance of a true-
positive pixel. Predicted connected components failing to
meet this criteria were considered false positives, and ground
truth connected components failing to meet this criteria were

considered false negatives. True negatives were undefined in
detection tasks, and thus they were evaluated with precision
recall curves.

RESULTS

The five CNN models that were tested included AlexNet,
VGG16, GoogLeNet, ResNet, and Inception-v3. Ultimate CNN
selection was based on accuracy, calculated as total correctly
classified patches divided by total number of all patches in a
held-out test set of 274 randomly selected patches from the

FIGURE 3. Probability heat maps highlight important regions. (A) Microaneurysm heat map over original image. Colors closer to red on the
spectrum denote high probability. Green denotes probability near 0.5, and blue denotes low probability. (B) Original image with bounding boxes
around four ophthalmologist-verified microaneurysms. The algorithm has missed the microaneurysm in the upper right of the image. The white

arrow points to the zoomed-in image on the right. (C) Zoomed-in image of the arrowed box int the lower left of the middle image (B) have a
microaneurysm in the center.

FIGURE 4. Comparison of probability map with ground truth. The heat map is generated from the probability map resulting from the output of the
CNN at each location on the image. Since the training set is relatively balanced, the detector is highly sensitive but poor at generating tight bounds
around the lesions. High-probability regions are in red, equivocal regions are highlighted in green, low probability regions in blue. (A–C)
Microaneurysms, (D–F) exudates. (A, D) Original image (B, E) binary mask ground truth, (C, F) generated probability heat map.
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Kaggle dataset (Table). A patch classification accuracy of 98%
and AUC-ROC of 0.99 was achieved on a held-out test set of
274 randomly selected image patches in which the majority
classifier accuracy would have been 58%. Similar results were
obtained using GoogLeNet-v1, Inception-v3, and ResNet, and
GoogleLeNet-v1 was chosen for the sliding window for its
efficient parameter-to-performance ratio (Table).

The outputs of our sliding window CNN were multichannel
probability maps for each image, where each channel
represented a different lesion (Figs. 3, 4). Since the training
data consisted of patches centered on the lesion of interest, the
higher probability elevations in the probability map tended to
cover both the lesion of interest and the surrounding pixels.
Although with smaller strides, the higher probabilities bound
the lesion of interest with tighter margins, the increase in
computational time does not change the accuracy of lesion
detection in a 1024 3 1024 image when the stride is less than
32 pixels.

Figure 5 plots the ROC curves across all eOphta test images
at the pixel level for microaneurysm and exudates separately.
The average probability value for abnormal classes at each

pixel was 0.03 with a standard deviation of 0.018, meaning that
the CNN was fairly confident of its prediction in the sea of blue
in the background of the image. The islands of orange and red
that represent high-probability regions tend to cover the
ground truth lesions and extend well into the surrounding
pixels of lesions. This characteristic partially explains the high
true-positive rate and false-positive rate. In addition, the large
proportion of abnormal training examples biased the detector
to a high sensitivity for artifacts such as black specks on the
camera or artefactual white reflections, despite the inclusion of
such artifacts labeled as normal in the training set.

Figure 6 plots the precision and recall for the same 148
images containing microaneurysms and 47 images containing
exudates for the detection task formulation of the problem.
The area under the precision recall curve was 0.86 for
microaneurysms and 0.64 for exudates. Overall the method
performs better in terms of sensitivity than in specificity or
positive predictive value.

DISCUSSION

CNNs are surprisingly effective at image classification, but
CNNs trained on the entire retinal scan do not effectively
detect the subtle pathologic changes present in early-stage
retinopathy. One reason may be that the CNNs used have been
optimized to recognize macroscopic lesions, such as those
present in the ImageNet dataset, rather than microscopic
lesions, such as microaneurysms.18 This difference is high-
lighted by recent studies applying CNN’s architecture opti-
mized on the ImageNet dataset to whole retinal images of the
retina for DR screening.7,19 Excellent performance is reported
in the detection of moderate or worse DR containing
macroscopically visible lesions, but detection of microscopic
lesions such as microaneurysms are much more difficult. This
is a problem that is not necessarily remedied with additional
data. For example, Gulshan et al.7 reported a 93% to 96% recall
for their binary classification tasks; however, this was not
improved when training with 60,000 samples versus 120,000

TABLE. Accuracy of Image Patch Detection Across Model Architec-
tures

Model Five-Class Accuracy, %* Binary Accuracy, %

AlexNet 74 79

VGG16 86 90

GoogLeNet 95 98

ResNet 92 95

Inception-v3 96 98

Data were calculated from a test set of 274 randomly selected
patches. The binary classification tasks are normal and abnormal.

* The five-class classification task includes normal, microaneurysm,
intraretinal hemorrhage, exudate or cotton wool spot, and neovascu-
larization or vitreous hemorrhage or intraretinal microvascular
abnormality or venous beading or chorioretinal scars or sclerotic
vessels.

FIGURE 5. Receiver operating characteristic curves. True-positive rate and false-positive rates were calculated across all pixels in each image against
ground truth binary masks produced by two ophthalmologists for 148 and 47 images containing microaneurysms and exudates, respectively, in the
eOphta dataset. (A) AUC-ROC curve depicted for microaneurysms; AUC-ROC was 0.94. (B) AUC-ROC for exudates was 0.95.
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samples. To build on existing techniques, groups have instead
used deep learning to augment existing methods rather than
deploy CNNs alone.20

Visualizations of the features learned by CNNs reveal that
the signals used for classification are represented at a
macroscopic scale.21 Moderate and severe diabetic retinopathy
contain macroscopic lesions at a scale that current CNN
architectures are optimized to classify. However, the lesions
that distinguish normal retinas from mild disease reside in less
than 1% of the total pixel volume, a level of subtlety that is
difficult for both human interpreters and CNNs to detect.
Several groups have sought to locate these subtle lesions
specifically. In the past, microaneurysm detection has been
studied using a smaller dataset of 50 training and test images
annotated by x, y coordinates and radii to identify these tiny
lesions. The performance criteria in this study evaluated the
proportion of x and y coordinates falling within a set distance
of the ground truth coordinates. Although evaluated by
different criteria from the current study, area under the curve
of the receiver operating characteristic for six methods in this
study varied between 0.80 and 0.88, with a human expert
scoring 0.96.22

The use of many square image patches for training and
detection using a sliding window technique has been
employed in pathology23 with success and performs a task
very similar to convolution and deconvolution in concept.
Feature extraction from image patches using sparse stacked
autoencoders has been trained on image patches from the
DIARETDB dataset and has collected normal patches by sliding
windows.24 The method was internally validated on the same
dataset it was trained on to obtain a patch classification AUC-
ROC of 96% on a subset of patches from the DIARETDB used
for testing.

This method in its current state has several limitations. Due
to a training set in which roughly half of patches are abnormal in
the dataset of patches, the CNN trained on this set assumes a
higher than normal prior probability for lesion detection, which
may cause high false-positive rates. With a few more training

examples of cotton wool spots, the separation of cotton wool
spots and exudates into separate categories likely would
improve the false-positive rate as well. Another way to decrease
false-positive rates, normal patches can be extracted in an
automated fashion, and future studies will seek to determine if
increased data can increase the specificity while preserving the
high sensitivity. Bias is introduced into the deep learning model
by factors such as the clinician-identified regions of interest and
the predefined patch size. Furthermore, the sliding window
technique was very sensitive to changes in the window size and
stride. Although this sliding window CNN showed promising
results, its clinical applicability is limited by the computational
time required to run several forward passes per image. Although
this study uses a single-size window, it is likely that lesions are
detected at scales optimal to their size unless those lesions can
be detected based on their texture alone.

Future steps for this method are to develop screening
algorithms for other causes of retinal disease, including such
common entities as macular degeneration and glaucoma, to
uncommon but time-sensitive emergent diseases such as retinal
tears, retinitis, and optic nerve swelling, and rare pathologies
such as white dot syndrome, dystrophies, and ocular tumors.

In summary, this study demonstrates that a sliding window
approach using neural networks trained on clinician-selected
regions of interest is able to detect subtle pathologic lesions
with significantly fewer examples than traditional CNNs.
Outside its applications in DR, this proposed method is a
promising step toward development of screening algorithms
for other, less-common retinal diseases.

Acknowledgments

The authors thank Darvin Yi for access to the FirstAid Deep
Learning Code repository, assistance in curation of the manuscript,
and experimentation and evaluation design.

Supported in part by grants from the National Cancer Institute,
National Institutes of Health (U01CA142555, 1U01CA190214,
1U01CA187947).

FIGURE 6. Precision recall curves in detection. Positive predictive value and sensitivity of detection across thresholds for every lesion in 148 and 47
images containing microaneurysms and exudates, respectively, in the eOphta dataset. (A) For microaneurysms, the area under the precision recall
curve was 0.86. (B) For exudates, the area under the precision recall curve was 0.64.

Deep Learning With Retinal Image Patches IOVS j January 2018 j Vol. 59 j No. 1 j 595



Disclosure: C. Lam, None; C. Yu, None; L. Huang, None; D.
Rubin, None

References
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